Downloaded 07/26/22 to 203.218.154.232 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Discrete Listwise Collaborative Filtering for Fast Recommendation

Chenghao Liu* Tao Lu' Zhiyong Cheng?

Abstract

Listwise collaborative filtering, which directly predicts a
ranking list of items for the given user, achieves superior
accuracy performance since it is aligned with the ultimate
goals of recommender systems. However, in corpus with the
enormous number of items, the calculation cost for the learnt
model to predict all user-item preferences is tremendous,
which makes full corpus retrieval extremely difficult. In this
paper, we propose a binarized collaborative filtering method,
called Discrete Listwise Collaborative Filtering (DLCF), to
represent users and items as binary codes for fast recom-
mendation. As such, the proposed method could accelerate
the retrieval procedure, since the user-item similarity could
be efficiently computed via Hamming distance. We further
adopt the discrete coordinate descent method to jointly opti-
mize our proposed model. Extensive experiments performed
on three real-world datasets demonstrate that 1) DLCF sig-
nificantly outperforms the state-of-the-art binarized recom-
mendation methods, and 2) DLCF shows very competitive
ranking accuracy compared to its real-valued version while
significantly improving the retrieval efficiency.

1 Introduction

Top-k recommendation is a fundamental task of a recom-
mender system, which aims to retrieve a set of preferred
items for each user request from the entire corpus. How-
ever, this problem is quite challenging both from an accu-
racy and efficiency perspective [Kang and McAuley, 2019].
The enormous number of items makes the prediction prob-
lem difficult in terms of their variability and sparsity. And
besides preciseness, recommender systems should strike a
balance between accuracy and efficiency [Zhu et al., 2019].
Practically, in corpus with tens or hundreds of millions of
items, exhaustively searching over all items to calculate each
item’s preference score and then ranking them according to
the scores for each user request is intractable due to its high
latency.

*Salesforce Research Asia. {chenghao.liu, shoi} @salesfoce.com

TSchool of Computer Science and Technology, Zhejiang University.
{lutaott,sunjl} @zju.edu.cn

*Shandong Artificial Intelligence Institute, Qilu University of Technol-
ogy (Shandong Academy of Sciences). jason.zy.cheng @ gmail.com

$Department of Computer Science and Technology, Tsinghua Univer-
sity. xin_wang @tsinghua.edu.cn

46

Xin Wang? Jianling Sun' Steven Hoi *

In the literature of recommender systems, lots of re-
search work focus on improving recommendation accu-
racy. Among these methods, Listwise Collaborative Filter-
ing (LCF) [Cao et al., 2007; Wang et al., 2016] has demon-
strated superior performance to others. To align with the ulti-
mate goal of recommender systems, LCF models the ranking
probability distributions over the permutations of items for
each user. Compared to the conventional Collaborative Fil-
tering (CF) [Koren et al., 2009] method which predicts the
preference of a user towards an item, LCF directly predicts
the ranking list of items for the given user.

To solve the efficiency problem in recommender sys-
tems, Binarized Collaborative Filtering (BCF) techniques,
which represent users/items with binary codes instead of the
real-value vectors, were proposed to accelerate the retrieval
process [Zhou and Zha, 2012; Zhang et al., 2014, 2016]. In
this way, the preference scores can be efficiently calculated
by fast bit-operations in the Hamming space. Meanwhile, by
exploiting special data structures for indexing all items, the
computation complexity of generating top-k preferred items
could be sub-linear or even constant [Wang et al., 2012;
Muja and Lowe, 2009]. In addition, each dimension of bi-
nary codes is only stored by one bit instead of 32/64 bits
float number for real-valued vectors, which remarkably re-
duces the storage cost.

In order to take advantage of the strengths of both
the ranking accuracy of LCF and the retrieval efficiency of
BCEF, we propose a Discrete Listwise Collaborative Filtering
method (DLCF) that learns binary codes for listwise CF
model. To the best of our knowledge, this is the first work to
perform hash technique on listwise loss for recommendation.
Specifically, the challenges and our contributions are briefly
summarized as:

1. The first challenge is how to effectively learn binary
codes with the real-valued observed ratings. Instead of
binarizing the learned user/item vectors from the LCF
by thresholding, we directly optimize the binary codes
with listwise loss which can preserve the intrinsic user-
item relationship. By additionally imposing balanced
and decorrelated constraints, DLCF is able to derive
informative yet compact binary codes in a limited size.

2. The second challenge is how to efficiently optimize the
listwise loss with balanced and decorrelated constraints.
Due to the form of the sum of exponentials in listwise

Copyright (©) 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/26/22 to 203.218.154.232 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

loss, it is difficult to derive closed-form solutions for
updating user/item binary codes, so that we seek its
local quadratic upper bound. We then adopt an efficient
alternative optimization algorithm by solving several
mixed-integer programming subproblems in an iterative
process. This optimization technique could preserve
the intrinsic user-item similarity with the goal of top-
k ranking.

3. Extensive experiments on real-world datasets demon-
strate that DLCF significantly outperforms the state-of-
the-art BCF methods. Compared with the real-valued
LCF method, DLCEF significantly improves retrieval ef-
ficiency and ensure competitive ranking accuracy.

2 Related Work

In this section, we briefly review related work on listwise
collaborative filtering and binarized collaborative filtering.

2.1 Listwise Collaborative Filtering (LCF) Listwise CF
[Cao et al., 2007] aims to directly predict a ranking list of
items for the given user. In this way, both the ranking po-
sitions and equal ratings can be well considered. It usually
utilizes a permutation probability model to represent each
user as a probability distribution over the permutations of
rated items. Therefore, more “correct” permutations, where
items with larger ranking scores are ranked higher, are as-
signed with larger probabilities. [Wang et al., 2016] pro-
posed to optimize the cross entropy between the probability
of top-k items and the observed ranking, since the time com-
plexity is exponential to k. But the cross-entropy loss may
rank worse scoring permutations more highly, since rating
data usually contain many ties. Instead, [Xia et al., 2008]
considered a maximum likelihood framework to use the per-
mutation probability directly. Recently, [Wu et al., 2018] ex-
tended this idea and proposed a stochastic queuing process
for handling ties and missing data.

2.2 Binarized Collaborative Filtering (BCF) As a pio-
neer work, Locality-Sensitive Hashing has been adopted for
generating binary codes for Google News readers [Das et al.,
2007]. Based on this work, rotating [Zhou and Zha, 2012]
features to obtain binary codes was applied for mapping
learned user/item embeddings into the binary codes for rec-
ommendation. In order to derive more compact binary codes,
the de-correlated constraint over different binary codes was
imposed on user/item continuous representations [Liu et al.,
2014b]. The relevant work could be summarized as two in-
dependent stages: relaxed learning of user/item representa-
tions with some specific constraints and subsequent bianary
quantization. However, such two-stage approaches suffer
from a large quantization loss according to [Zhang et al.,
2016], so direct optimization with discrete constraints was

47

proposed. To derive compact yet informative binary codes,
the balanced and de-correlated constraints were further im-
posed [Zhang et al., 2016]. To handle social information
from users, discrete social recommendation was proposed
[Liu et al., 2019b]. In order to incorporate content informa-
tion from users and items, content-aware matrix factorization
and factorization machine with binary constraints were also
proposed [Lian et al., 2017; Liu et al., 2018]. In order to
deal with ranking-oriented CF model, AUC objective func-
tion with pairwise loss was developed [Zhang et al., 2017]
to address personalized ranking from implicit feedback. Re-
cently, self-paced learning has been used for optimizing the
discrete and pairwise ranking-based objective [Zhang et al.,
2018]. To enhance the representation capability, composis-
tional coding collaborative filtering [Liu et al., 2019a] used
both real-valued vectors and binary coding to strike a blance
between retrieval efficiency and accuracy.

3 Discrete Listwise Collobiartive Filtering

3.1 Listwise Objective Function LCF utilizes Plackett-
Luce model [Cao et al., 2007; Marden, 2014; Wu et al.,
2018], a widely used permutation probability model, to rep-
resent each user as a probability distribution over the permu-
tations of rated items. It learns two latent matrices, i.e., U =
[ur,...,u,]" € R™"and V = [vy,...,u,]" € R™7,
where m and n denote the number of users and items, re-
spectively. The score of user ¢ towards j is the dot product of
their latent vectors, which is formulated as u; v7. Then, the
permutation probability is a generative model for the ranking
parametrized by user-item scores.

Formally, let II; be a particular permutation of the n
items for user ¢, which is a random variable and takes values
from the set of all possible permutations. II;; denotes the
index of highest ranked item and II,,, is the lowest ranked.
Then, the probability of generating the ranking permutation
matrix IT = [IIy,...,I1,,]T € R™*" for each user can be
formulated as

m u v,)

P(I|U,V) = HP (IL; |u;, V HH

where ¢(-) is an increasing and strictly positive function.
Obviously, larger ratings will tend to be ranked more highly
than lower ratings. In recommender systems, we usually
observe only a proportion of the ratings data 1 and it include
many items with the same ratings for each user, which makes
the permutation II no longer unique and there is a set of
permutations that coincides with rating. To address this
limitation, we adopt the stochastic queuing process [Wu et
al., 2018] that shuffles the ordering of observed items with
the same ratings. Specifically, we denote the set of valid
permutations as S (€2, R), where) is the set of all pairs (4, j)
such that R;;, the rating of user ¢ for item j, is observed.

Copyright (©) 2021 by SIAM
Unauthorized reproduction of this article is prohibited

=12 1Zl_] ¢(U vi,)

)

Downloaded 07/26/22 to 203.218.154.232 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Then, the probability of generating the observed ratings R
can be formulated as

P(RU, V)= Y

IES(R,Q)

>][R0, u,D)
NeS(RQ) i=1

m n; A)

.1 = 2 s

IIeS(R,Q) i=1j=

P(I|U, V)

¢(u v,)7

where n; denotes the number of observed items for user 1.
To learn U and V, we can minimize the negative likelihood
of permutation probability over observed ratings:

(3.2) argmlnflog Z P(IIU,V).
eS(R,Q)

3.2 Learning Model To improve recommendation effi-
ciency, we represent users/items with binary codes instead
of real-valued vectors such that the computation of dot
product between user and item binary codes can be ac-
celerated through the Hamming distance. Denote B =
[bi,....,by]"T € {£1}™" and D = [dy,...,d,]" €
{£1}"*" respectively as r-length binary codes for m users
and n items, then the score for user ¢ and item j can be cal-
culated by

. _1¢ 1 1 1.+
where H(-,) > i1 L(bix = dji) is the Hamming

distance between two binary codes and I(-) denotes the
indicator function that returns 1 if the element is true and
0 otherwise. According to [Muja and Lowe, 2009; Wang
et al., 2012], the time complexity of dot product could be
logarithmic or even constant through the high efficiency of
bit operations.

In order to maximize the information each bit carries
and to assure the compactness of the learned binary codes,
we impose the de-correlated constraint on the binary codes
to guarantee the independence among different bits and place
the balance constraint on the learning process to ensure that
each bit carries as much information as possible. Therefore,
learning binary codes for users and items in listwise CF
model is to minimize the following objective function:

argmin — log Z
B,D
. MES(R,Q)

st. 1)B=0,1'D=0,B'B=mI,,D'D =nl,

P(I1|B, D)

balanced constraint de-correlated constraint

(33) Be {£1}™" D e {£1}"*",

48

where we assume that ¢(b; d;) = %. As such, the
value of ¢(b, d;) can be bounded in [0,1]. Due to the
form of the logarithm of the sum of the exponentials in
P(1I|B, D) in (3.1) and (3.2), it is difficult to directly derive
the updating rule for binary codes B and D even based on
discrete coordinate descent method. However, the Log-Sum-
Exp function log), e is convex with respect to z;, so we
seek its upper variational yet quadratic bound for efficient
optimization:

(3.4)

— log Z

mes(R, Q)

P(IB,D)< -~ Y log P(II[B,D)
MeS(R,Q)
IIeS(R,Q) i=1 j= 1

< 2 ZZ%’

IIeS(R,Q) i=1 j=1

¢(b/ dn,,))

(b, dr,,)—ai;—§iji
5 +

where w;; = iy + DY (
A(Es)((6(b] di,) = ai)? - m+m<wwn—
d)(bjdnij) and \(&) = Z%(H% — 5). I = rank;(j) is
the rank of item j for user 2. o;; and &;;; are variational pa-
rameters. The first inequality follows the Jensen’s inequality
and convexity of —log function and the second inequality
follows from the Bouchard bound in [Bouchard, 2007]. Af-
ter introducing varitional parameters £ and «, the objective
function in (3.3) is re-formulated as:

argmln Z Z Z Wij

B.D.af f1eg(R,0) i=1 j=1
st. 1)B=0,1'D=0,B"B=mI,,D'D =nl,

’r n

(35) Be {+1}"", D e {+1}"*",

where « = {o11, ..., Qmn,, + and & =
{&115 -+, &mnyyn,, }- The problem formulated in (3.5)
is essentially a challenging discrete optimization problem,
since it is generally NP-hard. Finding the global optimum
solution needs to involve O(2("+7™)) combinatorial
search for the binary codes. An alternative way is to
impose auxiliary continuous variables X € Band Y € D,
where B = {X € R™"1,,X = 0,X'X = mL}
and D = {Y € R™ LY = 0,Y'Y = nl}.
Then the balanced and de-correlated constraints can
be softened by d(B,B) = minxep||B — X||r and
d(D,D) = minyep ||D — Y||r, respectively. Finally,
we can solve problem (3.5) in a computationally tractable

Copyright (©) 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/26/22 to 203.218.154.232 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

manner:

argmin Z ZZW + f1d*(B, B) + f2d*(D, D
B.D,a.t. XY e (R,Q) i=1 j=1
(3.6)

st. Be {1}, D e {+1}™".

where 3, and (3 are hyperparameters. We can find that large
values of 31 and (3 will force d*(B,B) = d*(D,D) = 0
when the objective in (3.6) can be optimized under some
feasible constraints. On the other side, the comparative small
values of 31 and [, provide a certain discrepancy between B
and X, D and Y, respectively. Note that the norm of binary
codes are constants and do not take any effect on regular-
ization terms. Therefore, we can replace the original regu-
larization d?(B, B), d?(D, D) with tr(BTX),tr(D"Y) as
follows:

m n;

2. DD

IIeS(R,Q) i=1 j=1
—281tr(BTX) — 28,tr(DTY)
st. 1IX=0X"X=mI, 1Y =0,Y"Y =nlI,

(3.7) B e {£1}™*", D € {£1}"*",

argmin
B,D,a,¢X,Y

where ¢r(-) denotes the trace of a matrix. It is worth noting
that we do not discard the binary constraints but directly
optimize the binary codes. Through joint optimization for
the binary codes, variational parameters and the auxiliary
real-valued variables, we can achieve nearly balanced and
un-correlated binary codes.

3.3 Alternating Optimization We can employ alternating
optimization strategy to solve the problem in (3.7). At
each step, we randomly choose a permutation matrix Il €
S(R,Q) as the stochastic queuing process in [Wu et al.,
2018] and then update B, D &, «, X, Y alternatively. The
detailed algorithm description is presented in Algorithm 1.
Below, we show that each subproblem has a closed-form
solution.

Learning ¢ and o: By fixing «, B, D, the sub-objective
w.r.t. £ is convex since its second derivative is greater than
zero. Thus, the optimal solution for ¢ is derived as:

(3.8) &iji = o(b] dn,,) — iy

Note that we only need to store all the predicted ratings
b, d; and «;; instead of ¢. Similiar to update &, by letting
the derivation of problem (3.7) w.r.t. c;; equals to zero, we
can update « by

S (L — 1) + 30 A (&) @b, di,,)

3.9 i =
G o ST)

We do not need to store A(&) either, since it can be computed
on-the-fly in constant time when we cache these predicted
atings and a.

earning B: We update B by fixing &, a, D, X,Y. Since
the objective function in (3.7) is based on summing over
independent users, we can update B by updating b; in
parallel according to

argmlnb ZZ j—l—bT(ZZ)\fnlddT)

bie{£1}" e, =1 jeq; t=1
!
1
- sz'T(D> M) (o — §)dj)
JjEQ; t=1
(3.100 —b] () d;) —4rpib]x;,
JEQ;

where 2; denotes the set of items rated by user 3.

Due to the discrete constraints, the optimization is gen-
erally NP-hard, we adopt the bitwise learning method called
Discrete Coordinate Descent (DCD) [Shen et al., 2015,
2017] to update b;. In particular, denoting b;;, as the k-th
bit of b; and b, as the rest codes excluding b;;. DCD up-
dates b;;, while fixing b,z. Thus, the updating rule for user
binary code b;j, can be formulated as

(311) bik — Sgn(O(lA)ik?bik)),

where b;;, = > jeq, Zizl 2X(&in) (—d;;;(bgf)ik + (i —

g)djk) ~ Y e0,(b = Ddji + 4rfray, and Oz, y) is a
function that O(z,y) = z if x # 0 and O(z,y) = y
otherwise. We iteratively update each bit until the procedure
converges with a set of better codes b;.

Learning D: Similarly, we can learn binary codes for item
J by solving

argmin d] ZZ—+dT(Z Z/\ € bbT)

d;je{£1}" jeq; t=1 i€, t=1
l
1
—2d] (323" M) (i — 5)bi)
i€Qy; t=1
(3.12) —d] (> bi)—4rfed]y;,
i€Q

where (); denotes the set of users who rated the item j.
Based on the DCD method, we update each bit of d;
according to

(3.13) djx = sgn(O(djn, d;i)),

where d;, =Yica, Et 12 &tl)((d)bk + (it —

%)bik) - Ziegj(% — Dbir + 47 By

Copyright (©) 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/26/22 to 203.218.154.232 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Learning X and Y: When B fixed, learning X could be
solved via optimizing the following problem:

max tr(BTX), 11X =0,(X)"X = mI,.
It can be solved by the aid of SVD according to [Liu et al.,
2014a]. Let B be a column-wise zero-mean matrix, where
Bij = B;j — = 3. B;;. Assuming B = PbEb(Qb) as its
SVD, Where each column of P, € R™*"" and Qp € Rr<r
represents the left and right singular vectors corresponding
to ' non-zero singular values in the diagonal matr1x .
Since B and Q, have the same row, we have 1" P, =0
due to 1"B = 0. Then we construct matrices Pb of size
mx (r—r') and Q of size r x (r—1') by employing a Gram-
Schmidt process such that f’l;rlab =L_., [Py I}Tf’b =0,
and Q/ Qy = I, [Qy1]7Q, = 0. Now we obtain a
closed-form update rule for X:

(3.14) X + m[Py, Py][Qs, Qu]"

In practice, to compute such an optimal X, we perform the
eigendecomposition over the small r X r matrix

BB = [Q;, Q) [(%)2 g] Qy, Q"

which provides Qp, Qb, , and we can obtain P, =
BQ,>"!. Then matrix Pb can be obtained by the afore-
mentioned Gram-Schmidt orthogonalization. Note that it re-
quires O (r?m) to perform SVD, Gram-Schimdt orthogonal-
ization and matrix multiplication.

When D fixed, learning Y could be solved in a similar
way:

m‘.?xtr(DYT), 1,Y=0,Y"Y =nI,.

Similarly, we can obtain an analytic solution:

(3.15) Y « /n[Pa, Pl[Qa, Qa)"

where each column of P, and Qd is the left and right
singular vectors of D, respectively. P, are the left singular
vectors corresponding to zero singular values of the r X r
matrix DD, and Qd are the vectors obtained via the Gram-
Schimidt process.

4 Algorithmic Analysis

We discuss the initialization issues and time complexity in
this section.

4.1 Initialization Note that the optimization problem in
Eq. (3.7) involves a mixed-integer non-convex problem, a
better initialization is important for faster convergence and
better local optimal solution. In order to achieve an efficient

Algorithm 1 DLCF Algorithm

Input: Observed user-item ratings R € R™*"
Output: B € {£1}™*™ D € {+1}"*"
Parameters: number of components G, code length r,
regularization coefficient v, o, bandwidth parameter i
Initialize B, D and X, Y € R™*™ according to (4.17).
while not converged do

Update av and € according to (3.9) and (3.8), repectively.

fori=1,--- ,mdo
Update b; bit-by-bit according to (3.11)
end for

forj=1,--- ,ndo
Update d; bit-by-bit according to (3.13).
end for
Update X and Y according to (3.14) and (3.15).
end while
Return B, D.

initialization, we initialize B, D, X and Y by relaxing the
binary constraints as

mo n; “1 vHi])

min > =3 > o g—m T
HeS(R,Q) i=1j=1 j
+ Bs||U||% + Ba|| V|7 — 2ﬁ1tr(UTX) — 2Botr(V'Y)
(4.16)
s610,X=0,1,Y=0,X"X=mL,Y'Y =nl,.

where ¢(z) = 1/(1 + exp(—=x)) is the sigmoid function.

We first initialize the real-valued matrix U and V ran-
domly and find the feasible solution for X and Y accord-
ing to our proposed learning method w.r.t. X and Y. Then
the alternating optimization is conducted by updating U and
V with traditional gradient descent method and updating X
and Y according to our proposed learning method. Once we
obtain the solution (U?, VY X% YY), we can initialize our
algorithm as:

(4.17) B+ sgn(U°%),D « sgn(V?), X « X" Y « Y°.

The effectiveness of the proposed initialization is illustrated

in Figure 1. We can see that without initialization, DLCF
algorithm needs more than 10 iterations to converge while
with initialization, it only takes 5 ~ 7 iterations and achieves
better ranking performance.

4.2 Computation Complexity for Model Training For
each iteration, the computation cost for updating B and
D is O(#itermnr?), where 7 is the average number of
observed items for each user and #iter is usually 5 ~ 7
in practice. The computation cost for updating « and &
is O(mn). For updating X and Y, it takes O(r*m) and
O(rzn), respectively. Suppose the entire algorithm requires
T iterations for convergence, the overall time complexity

Copyright (©) 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/26/22 to 203.218.154.232 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

X107 MovieLens 1M MovieLens 1M

=)

0.8

without inif
S 8 with init
2 < 0.76
g =
0 6 ®
2 Qor2
S 4 2 /_
0 0.64 —
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Iteration Iteration

Figure 1: Convergence curve of the objective values and
NDCG @10 of DLCF with/without initialization on the Movielens
1M dataset.

for training DLCF is O(T(mnr? + mr? 4+ nr? + ma)).
In summary, training DLCF is efficient even considering
a listwise ranking modal since it scales linearly with the
size of the data. Compared to the time complexity of the
discrete pointwise CF method in [Zhang et al., 2016], which
is O(T (mnr?+mr?+nr?)), DLCF only requires additional
cost for updating the variational parameter £ and «.

5 Experiments

As the key contribution of this work is the design of DLCF
for fast and accurate recommendation, we conduct experi-
ments to answer the following research questions:

RQ1: Compared with state-of-the-art binarized collabora-
tive filtering methods, how does DLCF perform in terms of
accuracy? How does the learning method benefit from joint
discrete optimization?

RQ2: How efficient is DLCF as compared to the real-valued
version of SQL-Rank?

RQ3: What’s the gap between the original likelihood loss
in (3.2) and its quadratic upper bound approximation used in
(3.4)? How about the convergence of Algorithm 1?

| Dataset [#Ratings [#Users [#ltems [#density ‘
Movielens 1M 1,000,209 6040 3900 4.2%
Yelp 696,865 25,677 | 25,815 | 0.11%
Netflix 100,480,507 | 480,189 | 17,770 | 1.18%

Table 1: Summary of datasets in our experiments.

Datasets and Settings. We experimented with three publicly
accessible datasets: Movielens 1M !, Yelp 2 and a subset of
Netflix. All of these ratings range from 0 to 5. We followed
the conventional filtering strategy by removing users and
items having less than 10 ratings [Rendle et al., 2009]. Table
1 summaries the experimental datasets. For each user, we
randomly sample 70% ratings as training data and the rest
30% as test data. We repeated a random split 5 times
for each dataset and computed the average results of each
algorithm over 5 runs. All the experiments were conducted

Thttp://grouplens.org/datasets/movielens
Zhttp://www.yelp.com/dataset

51

on a computer equipped with an Intel(R) Core(TM) i5-
7200U CPU @2.50GHZ, 16GB RAM and 64-bit Windows
10 operating system.

Parameter Settings and Performance Metrics. The
code length in DLCF varies in range {8,16,24,32}.
The two hyper-parameters $; and (o are tuned within
{107%,...,107}. Grid search is used to choose the best
parameters on the training split. We evaluate our proposed
algorithms by NDCG@10. A higher NDCG value reflects a
better accuracy.

Baseline Methods. We compare DLCF with the state-of-
the-art BCF methods and real-valued LCF methods:

e SQL-Rank is the state-of-the-art real-valued LCF
method [Wu et al., 2018].

o DRMF is the state-of-the-art BCF method [Zhang et
al., 2018] with pairwise ranking loss.

e DCF is the first BCF method [Zhang et al., 2016]
that directly tackles a discrete optimization problem for
pointwise loss.

o PPH is a two-stage hashing based method [Zhang et al.,
2014] with a relaxation stage and a quantization stage.

e BSQL-Rank is the SQL-Rank results with round-off
binary quantization.

e DLCFinit is the initialization problem of DLCF in
Eq. (4.16). We used BSQL-Rank and DLCFinit as
baselines to validate the effectiveness of the proposed
joint optimization.

5.1 Accuracy (RQ1) For fair comparison, the code length
and latent vector dimension of all the methods are set to
be identical, so that the performance gain is not caused by
increasing model complexity. In Figure 2 and Figure 3,
we compare DLCF with the baseline methods whose code
length varies from 8 to 32 in terms of NDCG on three
datasets. We can draw the following observations:

e We find that DLCF considerably outperforms PPH,
DCF, DRMF which are the state-of-the-art binarized
CF methods. This observation verifies the remarkable
advantage of utilizing listwise ranking loss over point-
wise and pairwise loss in discrete optimization of CF
model. Among baseline methods, DCF, DRMF con-
sistently outperforms PPH. This is consistent with the
findings in [Zhang et al., 2016, 2018] that the perfor-
mance of direct discrete optimization could surpass that
of the two-stage methods.

e Besdies, DLCF shows very competitive performance
compared with the real-valued listwise CF method,
SQL-Rank. As the bit size increases, the performance

Copyright (©) 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 07/26/22 to 203.218.154.232 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ix bits = 8

Yelp bits = 8

0.95

MovieLens1M bits = 8 Netfl
0.85 0.85
hSQL-Rank*DLCF*DRMF DCF-G-PPHl
0.8 0.8

[~saL-Rank=+DLCF *DRMF>DCF+PPH]|

SQL-Rank**DLCF % DRMF #-DCF <PPH|

60.7.5 / =éo75 . P
Q 0.7-% 8 0.7.‘%L 80'86-'

0.92

o

So.65] So.657 So.83
R

0.6 0.6 0.8
0.55 0.55 0.77

2 4 6 8 10 2 4 6 8 10 2 4 [8 10
K K K
MovieLens1M bits = 16 0.8 Netflix bits = 16 0.9 Yelp bits = 16

SQL-Rank*¥DLCF *DRMF #-DCF <«PPH|

5
*SQL-Rank+DLCF *DRMF > DCF +PPH|

5
*=SQL-Rank +DLCF *DRMF > DCF +PPH|

0.8 0.9 !
4 X
.75 .89
6@)0 1 6@)0 /L
o 0.7< 0-864
So.65 So.83
3
0 0 0.8
0.55 0.55 0.77
2 4 6 8 10 4 6 8 10 2 4 6 8 10
K K K
0.85 MovieLens1M bits = 24 Netflix bits = 24 0.95 Yelp bits = 24
;) s [*SQL-Rank+DLCF kDRMF +DCF +PPH| SQL-Rank *DLCF %xDRMF *DCF <PPH| 0'92 [*SQL-Rank+DLCF kDRMF+DCF +PPH|

0.55 0.55

go_es 20.83’/
0. 0.8
0.55 0.77
2 4 6 8 10 2 4 6 8 10
K K
MovieLens1M bits = 32 0.85 Netflix bits = 32 0.95 Yelp bits = 32
0.85F|+sQL-Rank *DLCF %DRMF -DCF <+PPH| ;) 8 [~ saL-Rank+DLCF *DRMF >DCF +PPH]| 0'92 [~ saL-Rank +DLCF *DRMF+DCF <PPH]|
0.8 : 1 -]
é)]ﬁ @_75: | X .89 /—
] O o7 / 90.86] —
O 0.7 o Y (S
Soes So.65 So.83}
A
0.6 0.6 o.st’/
0.77
4

xo
P

Figure 2: Recommendation performance comparison of NDCG@10 w.r.t. different code length.

gap between DLCF and SQL-Rank shrinks quickly. It
could even achieve the same performance with SQL-
Rank on Yelp dataset which is very sparse. One pos-
sible reason is that the higher sparsity of the dataset
makes real-valued vectors in SQL-Rank easy to overfit,
whereras the binarized codes in DLCF could alleviate
this issue since it has a much lower model complexity.

e Lastly, DLCF outperforms DLCFinit and BSQL-Rank,
which again verifies the superiority of the proposed
joint discrete optimization over the two-stage optimiza-
tion method in listwise CF model.

5.2 Efficiency (RQ2) Table 2 shows the retrieval time of
DLCEF (binary codes) and SQL-Rank (real-valued vectors) to
generate the top-k item list of all users by linearly scanning
the whole corpus. It is obvious that DLCF outperforms SQL-

Rank by an order of magnitude, which indicates the great
benefit of binarizing the real-valued parameters in listwise
CF model. This makes DLCF a more suitable model for
large-scale recommender systems where the retrieval time
for items is restricted within a limited time quota. Table 3
demonstrates the memory usage of DLCF and SQL-Rank.
We can find that DLCF considerably reduces the memory
storage of the model for 37 times within the same dimension.
These results imply that DLCF can adapt to some resource-
limited scenarios.

5.3 Effectiveness of the Quadratic Upper Bound Ap-
proximation (RQ3) Notice that the objective of DLCF in
(3.4) minimizes a variational quadratic upper bound instead
of directly optimizing the listwise loss function in (3.2). In
this section, we test the gap between the DLCF loss (based
on the upper bound) and the original listwise loss in the train-
ing procedure. In Figure 4, we can find that the gap between

Copyright (©) 2021 by SIAM
Unauthorized reproduction of this article is prohibited

52

Downloaded 07/26/22 to 203.218.154.232 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

MovieLens1M Yelp Netflix
0.85 0.92 0.85
l&DLCF 2 = [+DLCF
08 l=DLCFinit] 0_9/_ 0.8 l*=DLCFinit
(‘E) Slp-BsaL-Rank] o — (sspss (g@ . *BSQ’/L'R"““//-/,
Bo.75 8 R Q0.75
o Q0-86f a — 1 — I
=z <7>—<: =z DLCF L 2 [A— A —
0.7 | - 0.7
0.84F DLCFinit
BSQL-Rank
0.65 0.82 0.65
8 16 24 32 40 8 16 24 32 40 8 16 24 32 40
bit bit bit

Figure 3: Recommendation performance comparison between joint optimization and two-stage method.

135 10° MovieLens 1M . 10° Yelp X107 Netflix
[~DLCF Loss ’ [~DLCF Loss ’ [~DLCF Loss
n1.1 [~Listwise Lossif ¢, |—Listwise Loss —Listwise Loss
7] n 2F g
o o
=09 |
2 1.8
£o07r £
© ©
& osh = 1.6}
0.3 1.4 3.2
0 200 400 600 800 0 300 600 900 1200 0 1800 3600 5400 7200
Training Time(seconds) Training Time(seconds) Training Time(seconds)
Figure 4: The training loss comparison of DLCF and listwise loss.
Dataset SQL-Rank DLCF codes for users and items, which is aligned with the ultimate
Time Speedup | Time goals of recommender systems. DLCF directly addresses
Movielens 1M | 1.66 min x4.74 0.35 min the discrete optimization problem by iteratively solving sev-
Netflix 266.39 min x4.97 53.61 min eral mixed-integer programming subproblems. Extensive ex-
Yelp 41.95 min %x5.11 8.20 min periments on three real-world datasets demonstrate the ad-

Table 2: Retrieval time of DLCF and SQL-Rank with the same code
length (40) on three datasets.

Dataset SQL-Rank DLCF
Memory Reduction | Memory
Movielens IM | 292 MB x37 80.6 KB
Netflix 40.1MB %37 1.07 MB
Yelp 151 MB %37 416 KB

Table 3: Memory usage of DLCF and SQL-Rank with the same
code length (40) on three datasets.

the two loss functions is relatively small, which indicates the
upper bound approximation is a good approximation of the
original listwise loss in our model. Therefore, it can guar-
antee a good recommendation accuracy. Besides, we can
conclude that the proposed optimization method could con-
verge, which further comfirm the correctness of the proposed
optimization method.

6 Conclusion

In this paper, we propose a discrete listwise collaborative
filtering method to learn informative yet compact binary

vantages of our proposed method against several competi-
tive baselines in terms of recommendation accuracy, retrieval
cost and storage cost.

Acknowledgements

Xin Wang is supported by the National Key Research and
Development Program of China (No. 2020AAA0107800,
2020AAA0106300, 2018AAA0102000).

References

Guillaume Bouchard. Efficient bounds for the softmax
function and applications to approximate inference in
hybrid models. In NIPS 2007 workshop for approximate
Bayesian inference in continuous/hybrid systems, 2007.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang
Li. Learning to rank: from pairwise approach to listwise
approach. In Proceedings of the 24th international confer-
ence on Machine learning, pages 129—136. ACM, 2007.

Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and
Shyam Rajaram. Google news personalization:scalable
online collaborative filtering. In International Conference
on World Wide Web, pages 271-280, 2007.

Copyright (©) 2021 by SIAM
Unauthorized reproduction of this article is prohibited

53

Downloaded 07/26/22 to 203.218.154.232 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Wang-Cheng Kang and Julian McAuley. Candidate gener-
ation with binary codes for large-scale top-n recommen-
dation. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management,
pages 1523-1532, 2019.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix
factorization techniques for recommender systems. Com-
puter, (8):30-37, 2009.

Defu Lian, Rui Liu, Yong Ge, Kai Zheng, Xing Xie, and
Longbing Cao. Discrete content-aware matrix factoriza-
tion. In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 325-334. ACM, 2017.

Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Dis-
crete graph hashing. In Advances in Neural Information
Processing Systems, pages 3419-3427, 2014.

Xianglong Liu, Junfeng He, Cheng Deng, and Bo Lang.
Collaborative hashing. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2147-2154, 2014.

Han Liu, Xiangnan He, Fuli Feng, Ligiang Nie, Rui Liu,
and Hanwang Zhang. Discrete factorization machines
for fast feature-based recommendation. arXiv preprint
arXiv:1805.02232, 2018.

Chenghao Liu, Tao Lu, Xin Wang, Zhiyong Cheng, Jian-
ling Sun, and Steven CH Hoi. Compositional coding for
collaborative filtering. In Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 145-154, 2019.

Chenghao Liu, Xin Wang, Tao Lu, Wenwu Zhu, Jianling
Sun, and Steven Hoi. Discrete social recommendation.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 208-215, 2019.

John I Marden. Analyzing and modeling rank data. Chap-
man and Hall/CRC, 2014.

Marius Muja and David G Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. VIS-
APP (1), 2(331-340):2, 2009.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and
Lars Schmidt-Thieme. Bpr: Bayesian personalized rank-
ing from implicit feedback. In Proceedings of the twenty-
fifth conference on uncertainty in artificial intelligence,
pages 452—-461. AUAI Press, 2009.

Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen.
Supervised discrete hashing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 37-45, 2015.

54

Fumin Shen, Yadong Mu, Yang Yang, Wei Liu, Li Liu,
Jingkuan Song, and Heng Tao Shen. Classification by
retrieval: Binarizing data and classifier. 2017.

Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-
supervised hashing for large-scale search. IEEE Trans-
actions on Pattern Analysis & Machine Intelligence,
(12):2393-2406, 2012.

Shuaiqiang Wang, Shanshan Huang, Tie-Yan Liu, Jun Ma,
Zhumin Chen, and Jari Veijalainen. Ranking-oriented col-
laborative filtering: A listwise approach. ACM Transac-
tions on Information Systems (TOIS), 35(2):10, 2016.

Liwei Wu, Cho-Jui Hsieh, and James Sharpnack. Sql-
rank: A listwise approach to collaborative ranking. arXiv
preprint arXiv:1803.00114, 2018.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and
Hang Li. Listwise approach to learning to rank: the-
ory and algorithm. In Proceedings of the 25th interna-
tional conference on Machine learning, pages 1192—1199.
ACM, 2008.

Zhiwei Zhang, Qifan Wang, Lingyun Ruan, and Luo Si.
Preference preserving hashing for efficient recommenda-
tion. In Proceedings of the 37th international ACM SIGIR
conference on Research & development in information re-
trieval, pages 183-192. ACM, 2014.

Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He,
Huanbo Luan, and Tat-Seng Chua. Discrete collaborative
filtering. In Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Infor-
mation Retrieval, pages 325-334. ACM, 2016.

Yan Zhang, Defu Lian, and Guowu Yang. Discrete person-
alized ranking for fast collaborative filtering from implicit
feedback. In AAAI, pages 1669-1675, 2017.

Yan Zhang, Haoyu Wang, Defu Lian, Ivor W Tsang,
Hongzhi Yin, and Guowu Yang. Discrete ranking-based
matrix factorization with self-paced learning. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2758—
2767. ACM, 2018.

Ke Zhou and Hongyuan Zha. Learning binary codes for
collaborative filtering. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pages 498-506. ACM, 2012.

Han Zhu, Daqging Chang, Ziru Xu, Pengye Zhang, Xiang Li,
Jie He, Han Li, Jian Xu, and Kun Gai. Joint optimization
of tree-based index and deep model for recommender
systems. In Advances in Neural Information Processing
Systems, pages 3973-3982, 2019.

Copyright (©) 2021 by SIAM
Unauthorized reproduction of this article is prohibited

